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Critical scaling and universality in the short-time dynamics for antiferromagnetic models on a three-
dimensional stacked triangular lattice are investigated using Monte Carlo simulation. We have determined the
critical point by searching for the best power law for the order parameter as a function of time and measured
the critical exponents. Our results indicate that it is possible to distinguish weak first-order from second-order
phase transitions and confirm that XY antiferromagnetic systems undergo a �weak� first-order phase transition
accompanied by pseudocritical scaling.

DOI: 10.1103/PhysRevE.74.016109 PACS number�s�: 75.10.Hk, 75.40.Cx, 75.40.Mg

I. INTRODUCTION

Frustrated systems �1,2� are characterized by competing
interactions which may arise due to either disorder or geom-
etry. The behavior of such systems is often unpredictable but
the basic concepts of frustrated systems may provide insights
into the physics of complex systems and have practical uses
in areas ranging from microelectronics to drug delivery
�3–5�. Magnetic systems provide simple examples of frustra-
tion where exotic cooperative phases such as the “spin
glass,” “spin liquid,” and “spin ice” are found. During the
past twenty-five years a great deal of research effort has been
put into investigating the nature of phase transitions in
Heisenberg and XY frustrated systems in three dimensions
�6–11�. Particular attention has been devoted to Heisenberg
and XY stacked triangular antiferromagnets that are com-
monly referred to as STA models. These models represent
the simplest situation of frustration induced by the geometry
of the lattice leading to a critical behavior distinct from that
encountered in the usual ferromagnetic case. Indeed, in a
triangular lattice, the competition due to antiferromagnetic
interactions between nearest neighbor spins leads to a ground
state with a planar spin configuration. In each elementary
triangular cell the spins form a 120° structure with the vector
sum of the three spins equal to zero:

SA + SB + SC = 0 , �1�

where the subscripts A, B, C label the sites at the corner of
the elementary triangles shown in Fig. 1. As a consequence
the order parameter is no longer a simple vector but a matrix,
a fact that has led to the idea that these �noncollinear� frus-
trated magnets could belong to a new “chiral” universality
class �12�.

The XY STA model has been used to describe a great
number of stacked triangular materials including CsCuCl3,
CsNiCl3, CsMnI3, and CsCuCl3 as well as the XY helimag-
nets Ho, Dy, and Tb. The experimental results indicate that
these materials exhibit second-order phase transitions with
the exception of CsCuCl3 where the transition �13� is found
to be weakly first order. The measured critical exponents

exhibit scaling laws but vary from material to material which
contradicts the basic idea of a unique set of critical exponents
for all materials described by the same model. In some ex-
periments and also in some numerical simulations, the criti-
cal exponent �, also called the anomalous dimension, is
negative. This is forbidden if the theory which describes the
transition is a unitary Landau Ginzburg Wilson �LGW�
model �14�. Theoretical investigations using a perturbative
renormalization group �RG� calculation up to high order pre-
dict the existence of a fixed point and, thus, the possibility of
a second-order phase transition �11,15�. The varying critical
exponents in this study are associated with a spiral-like RG
flow to a chiral, focus fixed point �16�. Nonperturbative RG
�NPRG� methods predict a weak first-order phase transition
and attribute the appearance of scaling by a slowing down of
the RG flow in the whole region of the coupling constant
space �9,10�. The first numerical investigation of these STA
models using Monte Carlo methods indicated a second-order
phase transition with a set of critical exponents possibly as-
sociated with a new chiral universality class �12�. Some sub-
sequent numerical investigations have been performed on a
modified version of the STA model �17�, the STAR model,
with the R representing a rigid constraint. In this model, the
120° structure of the ground state is locally imposed at all
temperatures. As a consequence the fluctuations of the spins
within a triangular cell are suppressed while the fluctuations

FIG. 1. Ground state of the STA system. The shaded triangles
represent elementary plaquettes.
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in the relative orientation of the disconnected triangular cells,
or plaquettes, can still occur. Note that the STA and STAR
models have the same symmetries and the “microscopic”
changes performed are supposed to be irrelevant to the criti-
cal behavior if it is universal. In fact, it was found that the
STAR model exhibits a strong first-order phase transition,
thus raising doubts about the second order character of the
phase transition occurring in all XY STA models. Finally,
recent numerical studies of the STA model and its LGW
formulation by Itakura �18� also indicate a first-order phase
transition for the STA XY model itself.

In order to examine this effect of local rigidity in more
detail, we introduced a generalized model in which we can
continuously tune the local rigidity from the STA to the
STAR limits �19,20�,

H�r� = − �
�ij�

Jij Si · S j + r �
plaquettes.

�SA + SB + SC�2. �2�

The interactions Jij are antiferromagnetic within the triangu-
lar layers and ferromagnetic between layers and have the
same magnitude J=1. The subscripts A ,B ,C label the three
sublattices on the corners of each elementary triangle and the
plaquettes refer to disconnected triangles as shown in Fig. 1.
The parameter r imposes a constraint on the short wave-
length fluctuations of the order parameter. Continuous
changes in r from zero to infinity correspond to a continuous
change from the STA to the STAR model. In our previous
work with systems of linear sizes L�60 we found two dif-
ferent types of behavior: for r�1.0 the system exhibits a
“pseudocritical” behavior whereas, for r�1.0, a first-order
phase transition occurs. The critical exponents obtained in
the r�1.0 range appear to vary with the rigidity parameter r.
This nonuniversal behavior is inconsistent with true critical
behavior at a continuous phase transition for systems having
the same symmetry of the order parameter. We concluded
that the critical exponents are really pseudocritical exponents
and the observed scaling is “pseudoscaling.” The estimated
values of critical exponents are within the range of the ex-
perimentally observed critical exponents for ABX3 com-
pounds and Tb. In the range r�1.0 we were able to estimate
the value of latent heat for several values of r. We extrapo-
lated the values of the latent heat to r=0 and we found a
small but nonzero latent heat for the XY STA model, which
indicated a very weak first-order phase transition. This be-
havior was confirmed by studying the energy probability dis-
tribution using much larger system sizes L=96,138. Even
larger sizes would be needed in the case of the Heisenberg
model �18�. At negative values of r, the plaquettes are
aligned ferromagnetically but interact antiferromagnetically
and the symmetry of the order parameter is the same as at
positive r. A special case occurs at r=−1/2 where we simply
have a system of stacked Kagomé layers. Additional degen-
eracies are expected in this case.

The standard equilibrium Monte Carlo approach requires
extremely large lattice sizes L and long runs to properly
sample statistically independent configurations. Hence,
reaching a definite conclusion about the nature of the phase
transition that occurs in STA models requires a different ap-
proach. This need is even more important for the Heisenberg

STA, which, from a numerical or theoretical point of view, is
expected to be closer to a second order behavior than the XY
STA. For this reason we use an approach based on short-time
critical dynamics �21,22�.

II. SHORT-TIME CRITICAL DYNAMICS

Universality and scaling are generally expected at a
second-order phase transition when a system is in equilib-
rium. In Monte Carlo simulations, equilibrium is reached
after a large number of Monte Carlo steps �MCS� or in the
long-time regime. However, it was realized some years ago
that a universal scaling behavior can also occur within a
macroscopic short-time regime of the dynamic evolution of
the system �23�. The dynamic process considered can start
from a high temperature, disordered state rapidly quenched
to the critical temperature or it can start from a completely
ordered state heated up to this temperature. Janssen et al.
�23� showed using a renormalization group method that if a
system is prepared at high temperature with an initial value
of the order parameter m0 and then quenched to the critical
temperature, the time-dependent order parameter m�t� obeys
the following scaling form after a macroscopic small time:

m�t,�,L,m0� = b−�/�m�t/bz,b1/��,L/b,bx0m0� , �3�

where t is the time, �= �T−Tc� /Tc is the reduced temperature,
L is the linear size of the system, and b is a generic scaling
factor. In Eq. �3� � ,� ,z are the usual critical exponents while
x0, the scaling dimension of m0, is a new exponent associated
with the short-time dynamics. The scaling behavior de-
scribed by Eq. �3� is only observed in an intermediate time
range which is large compared to microscopic times but still
much smaller than the macroscopic time scales needed to
reach the new equilibrium state. Hence follows the name
short-time dynamics. Note that, at the critical point ��=0�,
the scaling form predicts that m�t� increases as m0 t� where
�= �x0−� /�� /z is a new critical exponent. Higher moments
of the order parameter behave similarly.

The existence of the short-time dynamic scaling �3� has
been confirmed in a large number of systems through Monte
Carlo simulations �see for instance Ref. �24� and references
therein�. Beyond its intrinsic interest the short-time dynamics
method has also provided a very efficient way to identify the
static critical exponents as well as the critical temperature.
Indeed, since the initial nonequilibrium state has short
ranged spatial correlations, one might expect that the time
evolution of the order parameter in this intermediate time
region will be independent of the lattice size L provided it is
not too small. Also, since the correlation time is small, this
approach is free of critical slowing down. An important ap-
plication of the short-time dynamics for our purpose is the
possibility to distinguish a �weak� first-order from a second-
order transition. This comes from the observation �22,25�
that for a first-order phase transition occurring at a critical
temperature Tc there exist two metastable states: a disordered
one at T�Tc and an ordered one at T�Tc. These states
disappear at the temperatures Tc1 and Tc2, respectively. For a
second-order phase transition the short-time dynamic behav-
ior exhibits a genuine scaling starting from both the ordered
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and disordered phase with Tc1=Tc2=Tc. For a weak first-
order transition one observes only a pseudoscaling behavior
at the �pseudocritical� temperatures Tc1 and Tc2 with the con-
dition: Tc1�Tc�Tc2. Thus the difference between the pseud-
ocritical temperatures Tc1 and Tc2 provides a quantitative
measurement of the strength of the first-order transition. The
important point is that, whereas it is difficult to determine Tc1
and Tc2 in equilibrium, it appears to be relatively easy to
determine them in the context of a short-time dynamic analy-
sis. This procedure has already been used with success to
study the behavior of the two-dimensional Potts model �22�.
We apply it in the context of frustrated magnets.

III. NUMERICAL SIMULATION

The ground state of the generalized model considered in
this paper has the spins on the corners of each elementary
triangle arranged at 120° to one another. There are three
sublattices as indicated in Fig. 1 and the order parameter can
be chosen as

m0 = SA − 0.5SB − 0.5SC. �4�

In order to study the short-time behavior, we consider a zero
temperature initial state where m0 has its maximum value

which we take to be in the y direction and label as m0y. We
also prepare the system in a high temperature disordered ini-
tial state with m0y =0.01. We then rapidly quench the system
to a number of temperatures close to the values of the critical
temperature obtained previously �19,20� using equilibrium
methods and we follow the order parameter m0y as a function
of Monte Carlo time steps �MCTS� using the Metropolis
algorithm. The results for each initial state are averaged over
103−20�103 trials depending on the linear size L. We fol-
low the time dependence of m0y as a function of time t for
three fixed temperatures and we use an interpolation scheme
to determine the temperature Tc which yields the best power
law behavior in the time range �100,1000�. This intermedi-
ate time range was found to give the best power law behavior
which only emerges after a time period which is long in
microscopic terms �21�. The error bars on Tc are determined
by the number of intermediate temperatures used in the in-
terpolation scheme. This procedure is carried out for both
low temperature and high temperature initial states. For a
disordered initial state, a log-log plot of m0y�t�versus time
should be linear and the slope yields �. For an ordered state
the slope yields � /�z. The derivative �� ln m�t ,����=0 should
also exhibit power law behavior with the exponent 1 /�z. For
a second-order phase transition these values of Tc should
agree and the exponents should be universal while for a first-
order phase transition distinct critical temperatures exist. Av-
erages are performed over different realizations of the initial
values of m0y and thus time averages are replaced by sample
averages and the full power of parallelized codes can be
used.

Figure 2 shows the behavior for a lattice of linear size
L=72 and r=4 starting from �a� the ordered state and �b� the
disordered state and then quenched to three different tem-
peratures. The solid curve in each case is obtained using an
interpolation scheme at each time to find the temperature
which yields the best scaling behavior. All temperatures are
measured in units of J. For the ordered initial state we find
that a value Tc2=1.9888�4� yields the best scaling whereas
for the disordered initial state we find Tc1=1.9669�4�. The

FIG. 2. The y component of the order parameter m0 as a func-
tion of time �MCS� for r=4 and L=72 with �a� an ordered initial
state and �b� a disordered initial state for various temperatures T in
units of J. The solid line is obtained by quadratic interpolation and
a least squares fit to the expected power law behavior.

FIG. 3. The r=4 pseudocritical temperatures �in units of J� for
both disordered �Tc1� and ordered �Tc2� initial states plotted as a
function of L. The lines indicate the average Tc in each case and
predict a 	Tc=0.023�1�.
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fact that these values of Tc are different is consistent with
our previous results �19,20� which indicated a latent heat
for r=2. We have performed the same calculations for sizes
L=60,72,90 and the values of Tc1 ,Tc2 are shown in Fig. 3
plotted vs L. The values of Tc1 ,Tc2 are different and are
independent of L in this time interval. The system displays
hysteresis with the average difference in the two values of Tc
yielding 	Tc=0.023�1�. The same procedure has been fol-
lowed for smaller values of r. Figures 4�a� and 4�b� show the
behavior of Tc1 ,Tc2 for r=2 and r=0, respectively. In both
cases the results indicate a weak first-order transition and the
values of the critical temperatures obtained here using the
present approach straddle those obtained using equilibrium
methods �20�. Table I summarizes the results for the differ-
ences in Tc as determined from the ordered and disordered

initial states as well as estimates for the various critical ex-
ponents obtained from the best power law dependence on t.
The values of the exponents vary with the constraint param-
eter r which indicates nonuniversal behavior. Using our mea-
sured values of � /�z and 1/�z we estimate the values of �
given in the last column. The values of � increase as r de-
creases in agreement with our previous study using equilib-
rium methods �19,20�. The value of �=0.27�1� for r=0 is
slightly larger than that predicted by previous numerical
studies but is consistent with the value obtained in experi-
ments on STA XY antiferromagnets �9�.

IV. CONCLUSION

We have investigated the critical behavior of a family of
XY noncollinear magnets on the stacked triangular lattice
geometry using the short-time dynamics approach. The criti-
cal temperatures obtained using this approach straddle those
obtained previously using equilibrium methods and indicate
that the transition is accompanied by hysteresis. The critical
exponents are found to vary with the constraint parameter r.
Since this parameter does not change the symmetry of the
model the exponents are nonuniversal. Our results strongly
suggest that the phase transition of STA XY antiferromagnets
is weakly first order in agreement with the NPRG field
theory predictions and with our previous equilibrium Monte
Carlo results. The method used here has the advantage that
scaling behavior emerges at relatively short times and also
for smaller sizes since our values of Tc are almost indepen-
dent of L. The results indicate that for the STA XY materials,
experiments need to be carried out at reduced temperatures
��10−3 in order to identify the true weak first-order nature
of the transition. The present method also provides a way to
study the question of an even weaker first-order transition for
STA Heisenberg materials.
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FIG. 4. The pseudocritical temperatures �in units of J� for both
disordered �Tc1� and ordered �Tc2� initial states plotted as a function
of L for �a� r=2 and �b� r=0. The lines indicate the average Tc in
each case and predict a 	Tc=0.013�1� �r=2� and 	Tc=0.0043�1�
�r=0�.

TABLE I. Results for the difference in critical temperatures 	Tc

and the exponents for various values of the constraint parameter r.

r 	Tc � � /�z 1/�z �

0 0.0043�1� 0.081�4� 0.218�1� 0.79�2� 0.27�1�
2 0.013�1� 0.045�5� 0.188�2� 0.83�2� 0.23�1�
4 0.023�1� 0.028�5� 0.169�1� 0.82�1� 0.20�1�
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